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Research

The global mean surface temperature has 
increased by 0.8°C in the past century and 
by 0.6°C in the past three decades (Hansen 
et al. 2006). Climate models also have pro-
jected further global warming by several 
degrees Celsius by the end of this century 
(Solomon et al. 2007), depending on future 
greenhouse gas (GHG) emissions. Climate 
change is expected to be an important health 
determinant for people in vulnerable areas 
(Confalonieri et al. 2007; Patz et al. 2005). 
There are concerns that climate change will 
cause excess deaths from malnutrition because 
of drought and crop failure (Schmidhuber 
and Tubiello 2007), diarrhea [McMichael 
et al. 2004; World Health Organization 
(WHO) 2004—referred to as WHO04 in 
this article], respiratory diseases (Beggs and 
Bambrick 2005), and vector-borne infectious 
diseases, such as malaria (Tanser et al. 2003).

When the impacts of climate change on 
health are estimated, uncertainties arise from 
many sources. In the words of Haines et al. 
(2006), “There is ... uncertainty over future cli-
mate change (particularly future greenhouse gas 
emissions), uncertainty about climate/health 
relations, and most importantly, uncertainties 
around the degree to which current climate/
health relations will be modified by socioeco-
nomic adaptation in the future.” These uncer-
tainties must be presented in unambiguous 
ways in any study of the future health impacts 
of climate change (Campbell-Lendrum and 

Woodruff 2006). Otherwise, rather than being 
helpful for policymakers, such studies may 
give misleading projections of the impacts of 
 climate change.

Here we have suggested a general approach 
for quantifying the impacts of future climate 
change on human health that incorporates 
uncertainties in empirical health data, as well 
as uncertainties associated with climate change 
projections. We have applied this approach 
to a specific case study of diarrhea incidence. 
The apparent tandem increase of diarrhea and 
temperature is one of the few reasonably well-
studied statistical linkages between disease and 
climatic fluctuations.

To the best of our knowledge, WHO04 
is the only existing quantitative study of the 
impacts of global warming on diarrhea. Using 
empirical studies from Fiji (Singh et al. 2001) 
and Peru (Checkley et al. 2000; Lama et al. 
2004), WHO04 inferred that warming by 
1°C was associated with a 5% increase in diar-
rhea, and noted that this was probably a con-
servative estimate. A wide uncertainty range 
(0–10% per 1°C warming) was applied to the 
correlation between diarrhea and temperature, 
but temperature projections from only one 
climate model were used. As discussed below, 
because of the substantial amount of inter-
model discrepancy with respect to regional 
projections, it is common practice to use mul-
timodel ensembles, that is, a set of results from 
multiple models, when assessing the spatial 

and temporal aspects of climate projections 
and forecasts (Collins 2007; Hagedorn et al. 
2005; Tebaldi and Knutti 2007; Thomson 
et al. 2006). 

In this article, we used the results from 
19 state-of-the-art climate models to span the 
largest possible range of intermodel differences 
and the uncertainties of GHG radiative forc-
ing. We also used recent empirical studies to 
narrow the uncertainty range associated with 
temperature–diarrhea regression coefficients 
in WHO04. Thus, our study is an extension 
of WHO04.

Currently, about 90% of all global deaths 
attributable to diarrhea occur in Africa, the 
Eastern Mediterranean region, and Southeast 
Asia (WHO 2008). Diarrhea has been esti-
mated to account for 17% of all deaths among 
children < 5 years of age and is ranked as 
the fifth leading cause of death in the world 
(WHO 2008). Because of the complexity of 
the causal patterns of the deadliest diseases 
and the regional nature of climate change, evi-
dence of direct links between disease and cli-
matic parameters is scarce (Patz 2002). That 
said, there are persuasive reasons to fear that 
the prevalence of diarrhea will increase with 
climate change. For instance, temperature 
increases were found to be positively corre-
lated with Salmonella in a number of European 
countries and Australian cities (D’Souza et al. 
2004; Kovats et al. 2004) and with Salmonella, 
Campylobacter, and Escherichia coli in 
Massachusetts and at different sites in Canada 
(Fleury et al. 2006; Naumova et al. 2007).

The estimate of temperature–diarrhea cor-
relation used in WHO04 is supported by a 
study from Dhaka, Bangladesh, where weekly 
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Background: Climate change is expected to have large impacts on health at low latitudes where 
droughts and malnutrition, diarrhea, and malaria are projected to increase.

oBjectives: The main objective of this study was to indicate a method to assess a range of plausible 
health impacts of climate change while handling uncertainties in a unambiguous manner. We illustrate 
this method by quantifying the impacts of projected regional warming on diarrhea in this century.

Methods: We combined a range of linear regression coefficients to compute projections of future 
climate change-induced increases in diarrhea using the results from five empirical studies and a 
19-member climate model ensemble for which future greenhouse gas emissions were prescribed. Six 
geographical regions were analyzed.

results: The model ensemble projected temperature increases of up to 4°C over land in the tropics 
and subtropics by the end of this century. The associated mean projected increases of relative risk 
of diarrhea in the six study regions were 8–11% (with SDs of 3–5%) by 2010–2039 and 22–29% 
(SDs of 9–12%) by 2070–2099.

conclusions: Even our most conservative estimates indicate substantial impacts from climate 
change on the incidence of diarrhea. Nevertheless, our main conclusion is that large uncertainties are 
associated with future projections of diarrhea and climate change. We believe that these uncertain-
ties can be attributed primarily to the sparsity of empirical climate–health data. Our results therefore 
highlight the need for empirical data in the cross section between climate and human health.
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diarrhea cases that were not related to cholera 
increased by 6% per 1°C increase (Hashizume 
et al. 2007). However, regional differences 
and contrasting effects of temperatures on dif-
ferent kinds of diarrhea are evident. For exam-
ple, a recent study from Japan found that the 
weekly number of infectious gastroenteritis 
cases increased by 8% for every 1°C increase 
in the average temperature (Onozuka et al. 
2010). In another recent study from two sites 
in China, Zhang et al. (2007) used regres-
sion analysis and found increases of 11–16% 
in the number of cases of bacillary dysentery 
for each 1°C temperature increase. Rotavirus, 
the leading cause of severe diarrhea globally, 
peaks in winter in temperate regions, but a 
1990 meta-analysis found a less-distinct sea-
sonality in the tropics (Cook et al. 1990). In 
another more recent meta-analysis, Levy et al. 
(2008) found a negative correlation between 
temperature and rotavirus in the tropics but 
with large differences between the sites. In the 
Dhaka study, Hashizume et al. (2007) found 
that the estimated effect of rising tempera-
tures increased slightly when rotavirus cases 
were excluded. In a newer study from Dhaka, 
Hashizume et al. (2008) found that the num-
ber of rotavirus cases had a U-shaped distri-
bution with respect to temperature, which 
indicated nonlinear effects at play that could 
not have been identified with linear regression 
models. Negative correlations between rotavi-
rus diarrhea and temperatures were found up 
to a threshold of 29°C, but over this thresh-
old, a 20–60% increase in hospital visits for 
rotavirus diarrhea was found with each 1°C 
temperature increase (Hashizume et al. 2008). 

We examined a range of quantitative associa-
tions between increases in diarrhea and tem-
perature to reflect the range of uncertainty of 
the climate data, the range of regional varia-
tions, and the range of empirical correlations 
found between temperature fluctuations and 
different types of diarrhea.

Besides temperature, climatic factors such 
as rainfall, relative humidity, and air pres-
sure may contribute to changes in incidence 
of diarrhea. The extent of these influences is 
highly dependent on the pathogens and on the 
water and sanitation infrastructure in differ-
ent regions. The exact causal mechanisms are 
unclear, but all of these variables may have an 
impact on the replication rate of certain bac-
terial and protozoan pathogens (to different 
extents). They may also have an impact on the 
survival rates of different viruses. Furthermore, 
heavy rainfall may contaminate drinking water 
on a larger scale. Few papers have examined 
the relationships between other climatic fac-
tors and diarrhea, and the results are incon-
sistent. Some studies found that rainfall does 
not affect transmission of specific diarrheal 
pathogens (Zhang et al. 2007), whereas other 
studies found that low levels of rainfall are 
associated with high incidences of diarrhea 
(Singh et al. 2001). Therefore, it seems rea-
sonable to choose to explore the uncertainties 
with the single factor already known to be cor-
related with diarrhea, rather than assessing the 
uncertainties associated with factors for which 
the links to diarrhea are less clear.

As we mentioned, uncertainties associated 
with the temperature response to increased 
radiative forcing due to GHG emissions 

are another important factor when project-
ing the impacts of climate change on human 
health. Although all climate models indi-
cate that increases in radiative forcing from 
higher GHG concentration levels lead to 
global warming, they vary in their regional 
projections (Räisänen 2001). Even a single 
climate model may yield different responses 
if key model parameterizations are changed 
(Murphy et al. 2007). As a result, the future 
projections in the 2007 Fourth Assessment 
Report of the Intergovernmental Panel on 
Climate Change (IPCC) were based on data 
from 25 climate models, including the 25 
used here. Each climate model was run mul-
tiple times for a common set of experiments, 
and each run was forced with preset path-
ways of greenhouse gas emissions, as specified 
by the IPCC’s Special Report on Emissions 
Scenarios (SRES; IPCC 2000).

We analyzed projected temperature 
changes in the regions that are currently 
most affected by diarrhea to highlight the 
large uncertainties that are associated with 
attempts to quantify the impact of climate 
change on human health. These uncertainties 
stem from the empirical data that relate cli-
mate change to health impacts and from the 
future projections of the climate models. By 
using an analysis of projected changes to the 
incidence of diarrhea as a case study, we have 
illustrated the importance of obtaining more 
robust empirical evidence of the causal corre-
lations between relevant health outcomes and 
climate change. Our research highlights how 
today’s scarcity of empirical studies of climate 
change impacts health and illustrates how 
the disagreement between climate models act 
together to limit the precision of future pro-
jections. Our analysis indicates that simplistic 
models of the relationships between health 
and climate change may be misleading and 
may therefore give a false impression of the 
true health impacts of global warming.

Materials and Methods
Data from 19 coupled atmosphere–ocean 
climate models from the World Climate 
Research Programme Coupled Model 
Intercomparison Project Phase 3 (CMIP3) 
multimodel data set (Meehl et al. 2007) were 
used to form a large multimodel ensemble. 
These models are listed in Table 1, along 
with the research and modeling groups that 
made the model data available. The future 
scenario projections in CMIP3 were imple-
mented by each group in two steps. First, 
the observed radiative forcing, including past 
GHG concentrations and volcanic eruptions, 
was used as input in the models for the period 
1850–2000. These model runs are known 
as the 20C3M simulations. The second step 
was to resume the model runs beginning in 
2000 by imposing projected GHG emissions 

Table 1. The 19 climate models and their corresponding institutions.

Country Originating group(s) CMIP3 model(s)
Australia CSIRO Marine and Atmospheric Research CSIRO-Mk3.5
Canada Canadian Centre for Climate Modelling and Analysis CGCM3.1(T63)
China LASG/Institute of Atmospheric Physics FGOALS-g1.0
France Météo-France/Centre National de Recherche Météorologiques (CNRM) CNRM-CM3
France Institut Pierre Simon Laplace IPSL-CM4
Germany Max Planck Institute for Meteorology ECHAM5/MPI-OM
Germany/Korea Meteorological Institute of the University of Bonn, Meteorological 

Research Institute of Korean Meteoological Adminstration, and 
Model and Data Group

ECHO-G

Japan Center for Climate System Research (University of Tokyo), National 
Institute for Environmental Studies, and Frontier Research Center 
for Global Change (JAMSTEC)

MIROC3.2 (hires) and 
MIROC3.2 (medres)

Russia Institute for Numerical Mathematics (INM) INM-CM3.0
United Kingdom Hadley Centre for Climate Prediction and Research/Met Office (MO) UKMO-HadCM3 and 

UKMO-HadGEM1
United States National Center for Atmospheric Research CCSM3 and PCM
United States U.S. Department of Commerce/ National Oceanic and Atmospheric 

Administration /Geophysical Fluid Dynamics Laboratory (GFDL)
GFDL-CM2.0 and 

GFDL-CM2.1
United States National Aeronautics and Space Administration/Goddard Institute 

for Space Studies (GISS)
GISS-AOM, GISS-EH, 

and GISS-ER

Abbreviations: AOM, Atmosphere–Ocean Model; CCSM3, Community Climate System Model Version 3; CGCM3.1, Third 
Generation Coupled Global Climate Model; CM, Climate Model; CSIRO, Commonwealth Scientific and Industrial Research 
Organisation; ECHAM5/MPI-OM, Max Planck Institute for Meteorology Atmosphere and Ocean Model; ECHO-G, Hamburg 
Atmosphere–Ocean Coupled Circulation Model; EH, ModelE20/HYCOM 4×5×L20 ; ER, ModelE20/Russell 4×5×L20; HadCM3, 
Hadley Centre Climate Model Version 3; HadGEM1, Hadley Centre Global Environmental Model, version 1; hires, high reso-
lution; LASG, National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics; 
medres, medium resolution; MIROC, Model for Interdisciplinary Research on Climate; PCM, Parallel Climate Model.
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according to preset scenarios from the IPCC 
SRES (IPCC 2000).

In this study, we analyzed annual tempera-
ture projections for the SRES A1B emissions 
scenario (IPCC 2000), where future emissions 
are specified to increase rapidly beginning in 
2000 and then gradually decrease until the 
atmospheric GHG concentration stabilizes 
at 720 ppm of CO2 equivalents toward the 
end of the 21st century. Two-meter tempera-
tures were used, the standard level at which 
tempera tures are measured at meteorological 
stations. The projected temperature changes 
are always presented as simulated changes 
relative to the simulated temperatures of the 
individual models for the baseline period 
1961–1990. It is important to emphasize that 
many models have regional and even global 
temperature biases with respect to observa-
tions. These biases are not necessarily caused 
by errors in the models; many of the factors 
that determine the level of natural variabil-
ity in the climate system appear to be non-
deterministic (e.g., Lorenz 1976) and are not 
implemented in today’s climate models. It is 
therefore customary to compute the simulated 
changes in a given parameter with respect to a 
baseline period (under the assumption that the 
model biases are constant with global warm-
ing). We computed the 1961–1990 baseline 
temperatures from the 20C3M scenario simu-
lations of the individual models, which were 
driven by observed 20th-century radiative 
forcing (GHG concentrations and volcanoes).

We defined the number α as the esti-
mated percentage increase in the relative risk 
(RR) of diarrhea with each 1°C temperature 
increase. Thus, if ΔT is the projected tem-
perature increase relative to 1961–1990 (in 
degrees Celsius), the RR after a temperature 
rise is RR = 1 + α × ΔT. The assumption that 
the association between diarrhea and a one-
unit increase in temperature is constant across 
all possible temperature increases is at odds 
with the study from Bangladesh (Hashizume 
et al. 2008), where the increase in the RR of 
diarrhea with a 1°C increase in temperature 
was greater when the temperature exceeded 

a certain threshold. Similarly, Checkley et al. 
(2000) found that admissions due to diar-
rhea doubled during the 1997–1998 El Niño 
event, when the temperatures in Lima were 
up to 5°C above normal. These studies sug-
gest that the relationship with temperature 
can be quite complicated for some diarrheal 
diseases. However, following the majority of 
the currently available studies, for the pur-
poses of our study, we assume that α is con-
stant with ΔT.

WHO04 used two studies, with α-values 
of 0.03 (Singh et al. 2001) and 0.08 (Checkley 
et al. 2000), to obtain an α-value of 0.05. 
We found five empirical studies, including 
those two conducted by Singh et al. (2001) 
and Checkley et al. (2000), that used linear 
regression models to isolate the effects of tem-
perature on diarrhea in general, and these 
studies are listed in Table 2. Unfortunately, 
we do not know which of these values is the 
most realistic.

To quantify the range of uncertainties 
associated with the choice of α and the range 
of temperature projections, we used a simple 
approach. For each year and location, there 
are 19 temperature projections, and we used 
five values of α. We chose to weight all the 
models and α-values equally. By combining 
these values in the formula above, we obtained 
a two-dimensional matrix of RR projections 
with 95 (19 × 5) elements for each year and 
location. We refer to these matrices as RR 
projection matrices in the remainder of the 
paper. Next, we show empirical cumulative 
distribution functions (ECDFs) based on the 
projection matrices. By spanning all available 
values for both α and ΔT, these ECDFs give 
realistic estimates of a range of RR projec-
tions, as well as their associated uncertain-
ties. The WHO04 used only one temperature 
projection (from one climate model) for each 
study region; thus, our study has placed more 
emphasis on intermodel ranges of climate 
uncertainty. In addition, because we did not 
choose one value for α, we explicitly show the 
two-dimensional uncertainties associated with 
diarrhea–temperature correlations.

Results
The projected annual mean temperature 
changes in the A1B scenario, with respect to 
the period 1961–1990 are shown in Figure 1. 
As the global impact of diarrhea is mainly con-
fined to the tropics and subtropics, the data 
were area averaged for all dry (nonoceanic) 
grid cells (the locations for which the model 
computations are done, typically separated by 
a distance of 2–3 degrees) between 40°N and 
40°S. The rationale for excluding oceanic grid 
cells is that the ocean surface does not warm as 
fast as the continents, so that the inclusion of 
wet grid cells would have introduced biases in 
our regional averages. The black curve shows 
the projected ensemble mean temperature evo-
lution, and the colored dots show the annual 
mean temperature changes as simulated by 
the individual climate models. The models 
included anthropogenic GHG emissions, vol-
canic eruptions, and other observed radiative 
forcing up to the end of the 20th century. The 
major eruption of Mount Pinatubo in 1991 
had a large impact on the global temperature 
(Soden et al. 2002), and the less powerful 
eruptions of Agung in 1963 and El Chichón 
in 1982 can also be discerned. As there were 
no major volcanic events in the models after 
2000, the ensemble mean temperature fluctu-
ations about the warming trend in that period 
are a result of interannual variability across 
the models and should be considered noise. 
The most striking feature in Figure 1 is the 
strong warming due to increased GHG con-
centrations after 2000. By the end of this cen-
tury, the mean projected warming in the A1B 
scenario amounts to almost 4°C with respect 
to 1961–1990. Even the most conservative 
model shows a warming of more than 2°C by 
2100. It is also worth noting that the level of 
discrepancy between the models increases as 
the temperatures rise.

Figure 2 shows a map of the 19-model 
ensemble average warming of the tropical and 
subtropical landmass under the A1B scenario 
by 2040–2069 and 2070–2099, again with 
respect to the baseline period 1961–1990 
in the 20C3M scenario. The data were 

Table 2. A summary of the five empirical studies used to determine the increase in the RR of diarrhea for each 1°C temperature increase (α).

Study Region
Estimated α  

(95% CI) No. of participants Outcome measure Population Period
Checkley et al. 

2000
Lima, Peru 0.08 (0.07–0.09) 57,331 admissions due 

to diarrhea
Daily admissions of diarrhea cases at one 

diarrheal unit in one hospital
Children < 10 years 

of age
1993–1996

Singh et al. 
2001

Fiji 0.03 (0.01–0.05) Not available Regional database of monthly diarrhea cases 
based on reports from multiple hospitals

All age groups 1978–1989

Lama et al. 
2004

Lima, Peru 0.11 (0.07–0.16) 237,382 admissions 
(40,020 due to diarrhea)

Monthly admissions of diarrhea cases at the 
emergency unit in one hospital

Adults > 13 years 
of age

1991–1998

Hashizume 
et al. 2007

Dhaka, Bangladesh 0.06 (0.03–0.08) 12,182 admissions due 
to diarrhea

Weekly admissions of noncholera diarrhea 
cases at one diarrheal unit in one hospital

All age groups 1996–2002

Onozuka et al. 
2010

Japan 0.08 (0.05–0.11) 422,176 reported 
cases of infectious 
gastroenteritis

Regional database of weekly infectious 
gastroenteritis cases (defined as sudden 
stomach ache, vomiting, and diarrhea) based 
on reports from multiple hospitals

All age groups 1999–2007

CI, confidence interval.
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interpolated on a regular global grid with 73 
latitude and 144 longitude points globally, as 
the spatial resolution between the models var-
ied. As discussed above, because warming of 
the oceans is slower than warming over land, 
the values in the dry grid cells on the target 
grid were composed using only dry grid cells 
from the source grids when interpolating. The 
projected temperature changes for the oceanic 
grid cells are not shown in Figure 2 because 
they are irrelevant in the context of this study.

The arid subtropical high-pressure belts, 
centered near 30°N and 30°S and spanning 
northern and southern Africa, the Middle 
East, and parts of Central Asia, are most sus-
ceptible to a strong warming across the range 
of models. Closer to the more humid equato-
rial regions in Africa, India, South America, 
and Southeast Asia, the warming is less pro-
nounced because some of the GHG radiative 
forcing is used for evaporating soil moisture 
(Giannini et al. 2008). The black dots in 
Figure 2 indicate where the intermodel stan-
dard deviation (SD) of the warming exceeds 
the thresholds of 0.5°C (for 2040–2069, top 
panel) and 0.7°C (for 2070–2099, bottom 
panel). These thresholds were chosen some-
what arbitrarily to illustrate where the models 
are in disagreement. As indicated in Figure 1, 
there is some discrepancy between the models, 
and one of the highest levels of intermodel dis-
agreement on the temperature change is found 
in South America.

We defined six geographical regions: 
South America, North Africa, Middle East, 
equatorial Africa, southern Africa, Southeast 
Asia (Figure 2) and computed 18 matrices of 
RR projections (one for each region, during 
2010–2039, 2040–2069, and 2070–2099) 
based on the 19 climate model temperature 
projections and five α-values. To illustrate 
this, an example of such a matrix is shown in 
Figure 3. We averaged the temperature projec-
tions in time over the period 2070–2099 (ΔT 
was computed with respect to 1961–1990) 
and the area over region B (North Africa) in 
Figure 2. One important feature in the figure 
is that the variance is larger across the col-
umns than across the rows. This result implies 
that the estimates used to quantify the effect 
of temperature on diarrhea (α) have a larger 
impact on the uncertainties in RR projec-
tions than do the intermodel temperature 
projection variance (Figure 3). This aspect is 
discussed below.

After dividing the period 2010–2099 
into three 30-year periods of equal length, 
we computed matrices corresponding to the 
one in Figure 3 for all six regions indicated in 
Figure 2. The ECDFs based on these matrices 
are shown in Figure 4. For each α-value, a 
distinct color code was used. The mean values 
for each matrix are shown on the x-axis. These 
values are also listed in Table 3, along with the 

Figure 1. Temporal temperature projections for the tropics and subtropics. The black curve shows the 
ensemble average temperature from the 19 climate models under the A1B scenario, area averaged from 
40°S to 40°N, and shown as annual changes with respect to the ensemble mean in the period 1961–1990. 
The colored dots show annual changes estimated by the individual models (see Table 1).
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SDs for each projection matrix. The WHO04 
projections for developing countries suggested 
an 8–9% increase in the RR of diarrhea by 
2030 compared with 1961–1990. These val-
ues are consistent with our mean projected 

increases of 8–11% for the period 2010–2039 
(Table 3). Later in this century, for the peri-
ods 2040–2069 and 2070–2099, the mean of 
our projection matrices gives risk increases of 
15–20% and 22–29%, respectively.

Discussion
As empirical data are scarce and the nature of 
the relationship between climate and health 
is easily obscured by a large number of con-
founding factors, it is extremely important to 
treat the uncertainties associated with climate 
change impacts in a transparent manner. To 
illustrate this issue, we attempted to quantify 
the impacts of projected regional warming 
on diarrhea using the following tools: a range 
of linear regression coefficients α to express 
the relationship between temperature and 
diarrhea incidence, and 19 climate models 
in which the atmospheric concentration of 
GHGs was specified to increase according to 
an emissions scenario specified by the IPCC.

We found that the choice of α had a 
greater influence on the uncertainties associ-
ated with projected RRs of diarrhea than the 
choice of climate model, although the influ-
ence of the climate models increased with 
larger projected temperature changes toward 
the end of the century. Figure 4 and Table 3 
illustrate that picking one α-value and using 
the temperature projections of only one cli-
mate model can be misleading. But perhaps 
the most important insight to be gained from 
Figure 4 and Table 3 is that the part of the 
variance that originates from intermodel dis-
crepancies is relatively small if one ignores the 
outliers among the models, that is, the very 
coldest and warmest model projections. This 
result is a strong argument for using more 
than one model but also highlights the fact 
that the total variance of the RR projections 
is dominated by the width of the range of 

Figure 3. An example RR projection matrix. The projected changes to the RR of diarrhea, with respect to the 
1961–1990 baseline, are shown for region B (North Africa as shown in Figure 2) for the period 2070–2099. 
The x-axis shows the five empirically derived increases in the RR of diarrhea for each 1°C temperature 
increase (α), and along the y-axis the 19 climate models are sorted with respect to the magnitudes of their 
projected warming.
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α-values. To further highlight this impor-
tant result, Supplemental Material, Figure 1 
(doi:10.1289/ehp.1002060) shows the range 
of projections for each region and time period 
when α was held fixed as the mean of the five 
values (while ΔT varied as before) in red, and 
when ΔT was held fixed as the intermodel 
mean (while α varied) in blue. In all cases, the 
range of RR projections is larger when the full 
range of α-values is used than when the inter-
model range of ΔT is used.

The assumption that a universal value exists 
for α is clearly open to question and has been 
put in doubt by one study (Hashizume et al. 
2008), where a distinctly nonlinear increase in 
rotavirus diarrhea above a certain temperature 
threshold is suggested. Nonlinear increases 
in diarrhea were also observed in Peru during 
the 1997–1998 El Niño episode, in which 
the temperature soared to up to 5°C above 
normal. This indicates that it might be more 
appropriate to study impacts from changes to 
the extreme values of daily mean temperatures, 
(rather than impacts from changes to annual 
mean temperature as in this study) for investi-
gating diarrhea–temperature relationships, but 
we found no empirical data built upon this 
relationship. Therefore, an obvious and impor-
tant item for future work is to develop nonlin-
ear regression models for temperature impacts 
on diarrhea; however, this work requires more 
accurate empirical data. An improvement in 
this field might lead to decreases in the uncer-
tainties of long-term projections of diarrhea 
and might also raise the prospect of seasonal 
forecasting of diarrhea, as has been done for 
malaria (Thomson et al. 2006).

Our study estimates some of the potential 
effects of projected climate change on diarrhea 
by using empirically derived estimates of the 
relationship between temperature and diarrhea 
incidence. Ideally, one could have performed 
stratified analyses for different pathogens, 
transmission routes, and disease severities, but 
this was impossible with the limited informa-
tion offered in the studies that we used. Such 
an analysis is also beyond the scope of our 
study, which can be considered a high-level 
meta-analysis of the relationships between 
diarrhea in general and global warming.

The discrepancies among the studies with 
regard to α (Table 2) may be attributable to 
a range of biases and may also be caused by 

variations in the epidemiologic characteristics 
of the different population subgroups. It is 
not for us to rigidly assess the realism of one 
study over another. Nevertheless, we see from 
Table 2 that the two studies with the highest 
and lowest α-values have some characteristics 
that may cast doubt on their compatibility 
with the other studies. In the study with an 
α-value of 0.03 (Singh et al. 2001), monthly 
diarrheal admission reports were used in the 
regression analysis, whereas the other studies 
used daily or weekly reports. The study with 
an α-value of 0.11 (Lama et al. 2004) con-
sidered only an adult population; all the other 
studies included younger age groups in their 
analysis. These differences highlight the need 
for consistent and specific kinds of empirical 
data on the association between temperature 
and diarrhea. Future research to address exist-
ing information gaps should carefully con-
sider the most appropriate case definitions 
and populations to evaluate for this purpose.

The uncertainties associated with regional 
climate projections are currently too large to 
be ignored. This is due partly to the coarse 
horizontal resolution of today’s climate mod-
els. In 2010 and 2011, the largest climate 
model data set so far, CMIP5, will be finalized 
and made ready for use in the scheduled IPCC 
Fifth Assessment Report. In contrast to earlier 
versions of CMIP, CMIP5 will have a sub-
stantial focus on regional scenarios and near-
term decadal predictions (Taylor et al. 2009). 
We hope and expect that this joint model-
ing effort will yield improved future regional 
temperature projections. However, for more 
accurate scenarios in densely populated areas, 
very high-resolution simulations will still be 
needed. For instance, urban heat island envi-
ronments (Arnfield 2003) can be substantially 
warmer than their surroundings. To obtain 
realistic temperature projections for such loca-
tions, accurate descriptions of important fac-
tors such as land use and topography must be 
fed into very-high-resolution regional climate 
models (Giorgi and Mearns 1991).

We emphasize that the possible effects 
of future adaptive health policies on diar-
rhea prevalence have not been assessed in this 
study. A recent study estimated that a 40% 
reduction in baseline rotavirus mortality could 
be achieved through mass vaccinations (Rose 
et al. 2009). In a recent international policy 

plan that aims to reduce childhood deaths 
from diarrhea, the United Nations Children’s 
Fund (UNICEF) and the WHO presented a 
comprehensive seven-point plan for diarrhea 
control (WHO, UNICEF 2009). This policy 
document does not assess in a quantitative 
manner the impacts of climate change and 
policy adaptations on the global burden of 
diarrhea. Nevertheless, investments in sanita-
tion and access to safe drinking water, together 
with increased access to vaccines, will obvi-
ously lessen the projected increase in the bur-
den of diarrhea induced by global warming.

Our results show that future climate 
change may bring disastrous increases in diar-
rhea. However, our most important result 
is that the uncertainties associated with 
these increases are unacceptably large. More 
accurate empirical data for the relationships 
between climate and health are clearly needed, 
as highlighted by Campbell-Lendrum and 
Woodruff (2006). We echo the call for action 
by Huntingford et al. (2007):

Currently we see a gulf between the climate 
 modelling research community, which provides 
predictions of future ‘weather’ such as temperature, 
humidity and rainfall, and those in the medical 
research community, which studies epidemics and 
the incidence of disease. Yet there is a crucial need 
to warn the policy- and decision-makers faced with 
the need to implement adaptive strategies of the 
future human health impacts of ‘global warming.’ 
To fulfill this need, climate and medical  scientists 
must work together.
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